

Facultad de Ingeniería Comisión Académica de Posgrado

Formulario de Aprobación Curso de Actualización

Asignatura: Hormigón Reforzado con Fibras I (HRFI)

Profesor de la asignatura 1: Dr. Ing. Luis Segura, Prof. Adjunto, Instituto de Estructuras y Transporte (IET)

Instituto o Unidad:

Instituto de Estructuras y Transporte

Departamento o Área:

Departamento de Estructuras

¹ CV si el curso se dicta por primera vez.

Horas Presenciales: 15 h

Público objetivo y Cupos: El curso está dirigido a estudiantes de posgrado y/o profesionales egresados/as de carreras de Ingeniería Civil o Arquitectura, interesados en comprender los conceptos básicos del comportamiento, análisis, diseño y ejecución de elementos estructurales de hormigón con fibras.

Presentar conceptos básicos del comportamiento, análisis, diseño y ejecución de elementos **Obietivos:** estructurales de hormigón con fibras. Se alcanzará un nivel que permita comprender las bases del diseño y ejecución de elementos estructurales que utilicen este material en aplicaciones profesionales, particularmente en sus aplicaciones principales (premoldeados y pavimentos)

Conocimientos previos exigidos: Análisis y diseño de estructuras de Hormigón. Conceptos básicos de tecnología del hormigón.

Conocimientos previos recomendados:

Metodología de enseñanza: El curso se dictará en clases de naturaleza teórico-prácticas, en la que se impartirán los conceptos generales y se realizarán ejercicios en los temas relacionados al cálculo y diseño. Además, se asistirá a un laboratorio, en el que se realizarán ensayos característicos del HRF.

- Horas clase (teórico): 12
- Horas clase (práctico/consulta): 2
- Horas clase (laboratorio): 0
- Horas evaluación: 1
 - o Subtotal horas presenciales: 15
- Horas estudio: 5
- Horas resolución ejercicios/prácticos: 2
 - Total de horas de dedicación del estudiante: 22

Forma de evaluación: Se realizará una prueba escrita individual al finalizar el curso.

Facultad de Ingeniería Comisión Académica de Posgrado

Temario:

PARTE I: ASPECTOS BÁSICOS DE PROPIEDADES, CARACTERIZACIÓN, DISEÑO Y CONTROL

INTRODUCCIÓN. Presentación del curso. Bases conceptuales del HRF. Presentación de Bibliografía y Normativas. Tipos y propiedades básicas de las fibras.

CONTROL Y CARACTERIZACIÓN. Sistemas de control y caracterización del HRF. Ensayos de viga: flexión en 4 puntos y 3 puntos con entalla. Ensayo de referencia: EN14651. Síntesis de otros ensayos: ensayos compactos (Barcelona y Montevideo); método inductivo. Aspectos de orientación y cuantificación en estructuras reales.

PROYECTO DE CÁLCULO. Bases de cálculo. Aporte de las fibras en los Estados límite último y de servicio. Cálculo seccional. Diseño según norma española: EHE-08 (Anejo 14). Colaboración en cortante. Sustitución de armadura mínima geométrica.

DOSIFICACIÓN Y EJECUCIÓN DEL HFR. Modificación de las propiedades en estado fresco y endurecido por la adición de las fibras. Aspectos básicos de orientación y distribución de fibras. Durabilidad del HRF. Comportamiento frente al fuego.

PARTE II: RESEÑA DE APLICACIONES PRINCIPALES

PAVIMENTOS. Diseño de pavimentos industriales. Rehabilitación de pavimentos de asfalto con hormigón con fibras (White-topping). Control de retracción plástica con microfibras.

PREMOLDEADOS. Elementos de baja responsabilidad estructural. Tubos de saneamiento con hormigón con fibras. Elementos de cubierta.

HORMIGÓN PROYECTADO. Hormigón proyectado en túneles. Estabilización de taludes. Refuerzo y reparación de estructuras.

PARTE III: APLICACIONES RECIENTES Y RESEÑA DE TEMAS DE INVESTIGACIÓN

APLICACIONES EN EDIFICACIÓN. Experiencias innovadoras en pantallas y pilotes de hormigón con fibras. Losas de HRF como único refuerzo. Alternativas para la rehabilitación de estructuras de edificación e históricas.

OTRAS APLICACIONES E INVESTIGACIÓN EN HRF. Hormigones de muy alta resistencia (UHPFRC). Hormigón proyectado con fibras. Diseño optimizado de dovelas y anillos para túneles de HRF. Temas actuales de investigación en HRF.

Bibliografía:

ACI 544.1R-96, State-of-the-art report on fiber reinforced concrete, Farmington Hills, Michigan: American Concrete Institute, 2002.

Aguado, A., Blanco, A., de la Fuente, A., & Pujadas, P. Manual Sobre el Hormigón con Fibras. Monografía CEMEX-UPC (Versión preliminar). 2012.

Bentur, Arnon, and Sidney Mindess. Fibre reinforced cementitious composites. Taylor & Francis, 2nd Ed, 978–0–203–08872–2 2007.

EHE-08. CPH. Instrucción del Hormigón Estructural. 2008.

Gallovich Sarzalejo, A., Rossi, B., Perri, G., Winterberg, R., & Perri Aristeguieta, R. E. Fibras como elemento estructural para el refuerzo del hormigón - Manual Técnico. Maccaferri do Brasil Ltd. 2005.

Johnston, Colin D. Fiber-Reinforced Cements and Concretes. Taylor & Francis. 0-203-86070-5. 2010.

Model Code. "International Federation for Structural Concrete (fib)" Federal Institute of Technology Lausanne-EPFL, Section Génie Civil, Swizerland. 978-3-433-03061-5. 2010.

Singh, Harvinder. Steel Fiber Reinforced Concrete. Behavior, Modelling and Design. 978-981-10-2507-5. Springer. Singapore. 2017.

Facultad de Ingeniería Comisión Académica de Posgrado

Datos del curso

Fecha de inicio y finalización: Intensivo: 23 y 30 de octubre de 2017 – de 9 a 12 y 14 a 17 h c/día.

Horario y Salón: salón del IET (habrá reunión inicial con los estudiantes para fijar horario)

Arancel: \$ 4500